
On the Diophantine equation 3x + py = z2 where p ≡ 2 (mod 3)

Abstract: Let p be a prime number where p ≡ 2 (mod 3). In this work, we give a non­negative integer solution for
the Diophantine equation 3x+py = z2. If y = 0, then (p, x, y, z) = (p, 1, 0, 2) is the only solution of the equation
for each prime number p. If y is not divisible by 4, then the equation has a unique solution (p, x, y, z) = (2, 0, 3, 3).
In case that y is a positive integer that is not divisible by 4, we give a necessary condition for an existence of a
solution and give a computational result for p < 1017. We also give a necessary condition for an existence of a
solution for qx + py = z2 when p and q are distinct prime numbers.
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1 Introduction
The Diophantine equation in the form

ax + by = zc (1)

has been studied in [1, 2]. Cao [3] showed that if
max{a, b, z} > 13, then (1) has at most one positive
solution with c > 1 and computed the complete solu­
tion in some cases [4]. An important result that is a
basis in establishing a solution for (1) is the Catalan’s
conjecture proved by Mihailescue in 2004.
Theorem 1. [5] (Catalan’s conjecture) The unique
solution for Diophantine equation ax− by = 1 where
min{a, b, x, y} > 1 is (a, b, x, y) = (3, 2, 2, 3).

A solution in some cases when c = 2 can be found
in [6, 7, 8, 9, 10]. In 2017, Burshtein [11, 12] showed
that

ax + by = z2 (2)
has infinite number of solutions.
Theorem 2. [11] Let p be a prime number that is
greater than 3 and a be an odd number. The Dio­
phantine equation ax + p = z2 has infinitely many
solutions

(a, p, x, z) = (a, 2 · an + 1, 2n, an + 1) .

where n is a positive integer.
Theorem 3. [12] The Diophantine equation 2x+b =
z2 has infinitely many solutions

(b, x, z) = (2 · 2n + 1, 2n, 2n + 1)

where n is a positive integer.

Theorem 4. [12] The Diophantine equation 3x+b =
z2 has infinitely many solutions

(b, x, z) = (2 · 3n + 1, 2n, 3n + 1)

where n is a positive integer.

Theorem 5. [12] The Diophantine equation 3x +
b2 = z2 has infinitely many solutions

(b, x, z) =

(
32n+1 − 1

2
, 2n+ 1,

32n+1 + 1

2

)
.

where n is a positive integer.

The above results from Burshtein were given for
(2) in cases y = 1, 2.

In this work, we consider a = 3. Sroysang [13, 14]
showed that (x, y, z) = (1, 0, 2) is the unique solution
for (2) when a = 3 and b = 5, 7. Lu [15] gave a gener­
alization of the Sroysang’s results stated that the only
solution for 3x + py = z2, when p ≡ 5 (mod 12),
is (x, y, z) = (1, 0, 2). Later, Asthana and Singh
[16] showed that the complete solutions for 3x +
13y = z2 are (x, y, z) is (1, 0, 2), (1, 1, 4), (3, 2, 14)
or (5, 1, 16). We note that the result of Asthana’s is
not covered by that of Lu’s. The result appearing in
this work is a generalization of Sroysang’s results but
not those of Asthana’s. Our result is not contained in
Lu’s because Lu’s condition does not cover case p ≡ 3
(mod 4).

In 2019, Bushtein [17] established some non­
negative solutions for Diophantine equation

3x + py = z2, (3)
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where p is an odd prime number and x+ y ≤ 8. The
result’s of Bushtein [11, 12, 17] restricted values of x
and y in small numbers while in this work, our inves­
tigation does not have such restriction.

In this work, we are interested in a non­negative
integer solution for the Diophantine equation (3),
where p is a prime number that p ≡ 2 (mod 3). Our
result generalizes the results of Sroysang [13, 14]. We
give the complete solution in case of y = 0 or y is
not divisible by 4. In case that y is a positive num­
ber that is divisible by 4, we give a necessary condi­
tion for an existence of a solution in a more general
term. We give a necessary condition for an existence
of a solution for qx + py = z2 when p, q are distinct
prime numbers. Finally, we compute that for a pos­
itive integer y that is divisible by 4 and p < 1017, a
solution for (3) exists only if p = 2 or p = 11 The so­
lutions for such case are (p, x, y, z) = (2, 2, 4, 5) and
(p, x, y, z) = (11, 5, 4, 122), respectively. Most of
the application of a Diophantine equation are in cryp­
tography [18, 19]. Application in other fields can be
found in [20, 21].

2 Main results
The following lemmas are direct results from Theo­
rem 1.

Lemma 6. The only non­negative integer solution for
3x + 1 = z2 is (x, z) = (1, 2).

Lemma 7. Let p be a prime number. The only non­
negative integer solution for 1+py = z2 is (p, y, z) =
(2, 3, 3).

Theorem 8. Let p be a prime number. If y = 0, then
3x + py = z2 has a unique solution (p, x, y, z) =
(p, 1, 0, 2) for each prime p.

Proof. If y = 0, then z2 = 3x + p0 = 3x + 1; hence,
we have (p, x, y, z) = (p, 1, 0, 2) by Lemma 6.

Theorem 9. Let p be a prime number where p ≡ 2
(mod 3). If y is not divisible by 4, then 3x + py = z2

has a unique solution (p, x, y, z) = (2, 0, 3, 3).

Proof. Let p be a prime number where p ≡ 2
(mod 3) and x, y and z be non­negative integers such
that 3x + py = z2. If x = 0, then 1 + py =
30 + py = z2. The only solution for this case is
(p, x, y, z) = (2, 0, 3, 3) by Lemma 7. Now, we sup­
pose x ≥ 1 and consider the cases of y.
Case 9.1. y is an odd number.

Since y is an odd number, it follows that y = 2k+1
for some k ∈ N ∪ {0}. So 3x + p2k+1 = z2. Since
p ≡ 2 (mod 3), it follows that p2k+1 ≡ (−1)2k+1 ≡
−1 (mod 3). We note that z2 ≡ 0, 1 (mod 3) for all
z ∈ Z. Hence z2 ≡ 3x + p2k+1 ≡ 0 + (−1) ≡ 2

(mod 3) is not possible. Thus, if y is an odd number
then the equation has no solution.
Case 9.2. y is an even number.

We have y = 2k for some k ∈ N. So

3x + p2k = z2

3x = z2 − p2k

= (z − pk)(z + pk).

Hence 3u = z − pk and 3x−u = z + pk for some
non­negative integer u. Since

3x−u = z + pk > z − pk = 3u,

we have x− u > u that is x > 2u. Thus

(z + pk)− (z − pk) = 3x−u − 3u

2 · pk = 3u(3x−2u − 1).

Since x > 2u, it follows that 3x−2u − 1 is an integer.
Thus 3u | 2 · pk. Since (3, p) = 1, it follows that
3u | 2. Then 3u = 30 that is u = 0. So

2 · pk = 3x − 1. (4)

Since p ≡ 2 (mod 3), we have pk ≡ (−1)k

(mod 3). By the assumption 4 ∤ y, we have that k is
an odd number, so pk ≡ −1 (mod 3) contradiction.
Therefore 3x+py = z2 has exactly one non­negative
integer solution which is (p, x, y, z) = (2, 0, 3, 3)
when y is not divisible by 4.

Theorem 10. Let p and q be odd prime numbers,
where p ̸= q. The solution for qx + py = z2 exists
only if one of the following is true:

• q ≡ 1 (mod 4), p ≡ 3 (mod 4) and y is an odd
number,

• q ≡ 3 (mod 4), p ≡ 1 (mod 4) and x is an odd
number,

• q ≡ 3 (mod 4), p ≡ 3 (mod 4) and the parity
of x, y is different.

Proof. Since p and q are odd numbers, it follows that
z is even. Hence z2 ≡ 0 (mod 4). If q ≡ 1 (mod 4),
then qx ≡ 1 (mod 4) for all non­negative integer x.
Hence py ≡ 3 (mod 4) which implies that p ≡ 3
(mod 4) and y is an odd number.

Consider q ≡ 3 (mod 4) and x is odd. We have
qx ≡ 3 (mod 4). Hence py ≡ 1 (mod 4) which im­
plies that either p ≡ 3 (mod 4) and y is an even num­
ber or p ≡ 1 (mod 4).

Consider q ≡ 3 (mod 4) and x is even. We have
qx ≡ 1 (mod 4). Hence py ≡ 3 (mod 4) which im­
plies that p ≡ 3 (mod 4) and y is an odd number.
This completes the proof.
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Therefore, a solution for 3x + py = z2 exists only
if one of the following is true:

• p ≡ 1 (mod 4) and x is odd

• p ≡ 3 (mod 4) and x, y have different parity.

Theorem 11. Let p, q be prime numbers, where q is
odd and p ̸= q, and y be an even positive number. If a
non­negative integer solution of qx + py = z2 exists,
then the solution is in the form

(q, p, x, y, z) =

(
q,

(
qx − 1

2

) 2

y

, x, y,
qx + 1

2

)
.

Proof. Suppose that qx+ py = z2 has a non­negative
integer solution (q, p, x, y, z). Since y is an even pos­
itive number, we have y = 2k for some k ∈ N. So

qx + p2k = z2

qx = z2 − p2k

= (z − pk)(z + pk).

Thus qu = z − pk and qx−u = z + pk for some non­
negative integer u. Since qx−u = z+ pk > z − pk =
qu. We obtain x− u > u that is x > 2u. Thus

(z + pk)− (z − pk) = qx−u − qu

2 · pk = qu(qx−2u − 1).

Since x > 2u, it follows that qx−2u − 1 is an integer.
Thus qu | 2 · pk. Since (q, p) = 1 and q is odd, it
follows that qu | 2. Then qu = q0 that is u = 0.
Hence, 2 · pk = qx − 1 implying that pk = qx−1

2 .
By substituting pk = qx−1

2 in qx + py = z2, we have
z = qx+1

2 . This completes the proof.

Corollary 12. Let p be a prime number and y = 4k
for some positive integer k. If a non­negative integer
solution of (3) exists, then x is an odd number and the
solution is in the form

(p, x, y, z) =

((
3x − 1

2

) 1

2k

, x, 4k,
3x + 1

2

)
.

Proof. This is a direct result from Theorems 10 and
11.

Corollary 13. Let p be an odd prime number and y
be a positive integer that is divisible by 4. If a non­
negative integer solution of (3) exists, then

√
3x−1
2 is

a power of the prime number p.

x n
1 1
2 2
5 11
65 2269476972881366
66 3930849423638141
67 6808430918644098

Table 1: List of x, n ∈ N such that 3x + ny = z2

where n < 1017 for some z ∈ N

By Corollary 13, we compute the value of x, n ∈
N and determine whether the corresponding z is an
integer. The values of x, n ∈ N satisfying 3x + ny =
z2, where n < 1017 and z is an integer, are listed in
Table 1. We compute such values up to x = 68 and
find that x = 67 is the largest value that

√
3x−1
2 <

1017. Next, we determine whether n is a power of
a prime number. We find that 2269476972881366,
3930849423638141 and 6808430918644098 are not
power of a prime number. Thus, we can conclude that
for a prime number p < 10k where p ≡ 2 (mod 3)
and y is a positive integer that is divisible by 4, the
equation (3) has a solution only when p = 2 or p =
11.

3 Conclusion
By computing the result in Corollary 13 up to
x = 68, we have that (p, x, y, z) = (2, 2, 4, 5)
and (p, x, y, z) = (11, 5, 4, 122) are the only
solutions within the range of p < 1017 in case
that y is a positive integer that is divisible by
4. If y = 0 or y is not divisible by 4, the so­
lution for (3) is either (p, x, y, z) = (p, 1, 0, 2)
or (p, x, y, z) = (2, 0, 3, 3). Therefore, for each
prime number p < 1017 that p ≡ 2 (mod 3)
the solution for 3x + py = z2 is (p, x, y, z) ∈
{(p, 1, 0, 2), (2, 0, 3, 3), (2, 2, 4, 5), (11, 5, 4, 122)}.
This is a generalization of [13, 14]. However, the so­
lution given in case is that y is a positive integer that
is divisible by y might not be a complete solution. In
this paper, we have a restriction on the prime number
p that p ≡ 2 (mod 3); hence, it is not covered the
result of Asthana and Singh [16].
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